

Math 565: Functional Analysis

Lecture 10

Existence of bdd linear functionals: Hahn-Banach Theorems.

It's easy to build linear functionals on ∞ -dim spaces because we can take any function on a linear (Hamel) basis and uniquely extend it to a linear functional, but this typically won't be continuous.

Def. For a real vector space X , a sublinear functional is a function $p: X \rightarrow \mathbb{R}$ satisfying:

- (i) $p(x+y) \leq p(x) + p(y)$ for all $x, y \in X$;
- (ii) $p(\lambda x) = \lambda p(x)$ for all $\lambda \geq 0$ and $x \in X$. (In particular, $p(0_X) = 0$.)

Examples. All linear functionals and all semi-norms are sublinear functionals.

Real Hahn-Banach. Let $Y \subseteq X$ be real vector spaces, p a sublinear functional on X , and f a linear functional on Y satisfying $f \leq p|_Y$, i.e. $f(y) \leq p(y)$ for all $y \in Y$. Then f admits an extension to a linear functional $\tilde{f}: X \rightarrow \mathbb{R}$ satisfying $\tilde{f} \leq p$.

Remark. Let p be a semi-norm. Then $f(y) \leq p(y)$ and $-f(y) \leq f(-y) \leq p(-y) = p(y)$ implies $|f(y)| \leq p(y)$.

Thus, the theorem will yield a functional \tilde{f} whose p norm is ≤ 1 .

Proof (AC). We start with Y a extend "one dimension at a time" then apply Zorn's lemma.

First, let's show that we can always extend by one dimension. Let $x \in X \setminus Y$ and we define an extension $g: Y + \mathbb{R}x \rightarrow \mathbb{R}$ of f satisfying $g \leq p|_{Y + \mathbb{R}x}$. This extension is uniquely determined by the value $g(x)$ by linearity, so it remains to choose this value so $g \leq p|_{Y + \mathbb{R}x}$. Note that if this was satisfied, we would have to have: for all $y_1, y_2 \in Y$,

- (i) $f(y_1) - g(x) = g(y_1 - x) \leq p(y_1 - x)$, so $g(x) \geq f(y_1) - p(y_1 - x)$.

$$(ii) f(y_2) + g(x) = g(y_2 + x) \leq p(y_2 + x), \text{ so } g(x) \leq p(y_2 + x) - f(y_2).$$

Hence, (i) + (ii) gives: $\forall y_1, y_2 \in Y$,

$$f(y_1) - p(y_1 - x) \leq g(x) \leq p(y_1 + x) - f(y_2).$$

Thus, we need to have

$$\sup_{y_1 \in Y} f(y_1) - p(y_1 - x) \leq g(x) \leq \inf_{y_2 \in Y} p(y_2 + x) - f(y_2). \quad (\star)$$

But $f(y_1) - p(y_1 - x) \leq p(y_1 + x) - f(y_2)$ because $f(y_1) + f(y_2) = f(y_1 + y_2) \leq p(y_1 + y_2) = p(y_1 - x + x + y_2) \leq p(y_1 - x) + p(x + y_2)$. Hence we may take a value of $g(x)$ to satisfy (\star) .

It remains to check that $g \in p|_{Y + \mathbb{R}x}$. Fix $y \in Y$ and $\lambda > 0$, and compute:

$$(i) g(y - \lambda x) = f(y) - \lambda g(x) \leq f(y) - \lambda \left(f\left(\frac{1}{\lambda}y\right) - p\left(\frac{1}{\lambda}y - x\right) \right) = f(y) - \lambda \cdot \frac{1}{\lambda} f(y) + p(y - \lambda x) = p(y - \lambda x).$$

$$(ii) g(y + \lambda x) = f(y) + \lambda g(x) \leq f(y) + \lambda \left(p\left(\frac{1}{\lambda}y + x\right) - f\left(\frac{1}{\lambda}y\right) \right) = f(y) - \frac{1}{\lambda} \lambda f(y) + p(y + \lambda x) = p(y + \lambda x).$$

Now we apply Zorn's lemma and get an extension with maximal domain, which then has to be X because otherwise we could extend further by one more dimension. Here are the details.

Zorn's lemma (\Leftrightarrow Axiom of Choice). If (P, \leq) be a partial order such that every linearly ordered subset $C \subseteq P$ has an upper bound. Then P has a maximal element $m \in P$, i.e. $\nexists p \in P$ with $m < p$.

In our case $P := \{g: \mathbb{Z} \rightarrow \mathbb{R} : \mathbb{Z} \subseteq X \text{ subspace, } g \text{ linear, } g \leq p|_{\mathbb{Z}}, f \leq g\}$ and $g_1 \leq g_2 \Leftrightarrow g_1 \subseteq g_2$ (functions are just sets of pairs). Then if $C \subseteq P$ is a linearly ordered set of such functionals, then $u := \bigcup C = \bigcup_{g \in C} g$ is a linear functional on $\mathbb{Z} \subseteq \bigcup_{g \in C} \text{dom}(g)$ satisfying $u \leq p|_{\mathbb{Z}}$ (check!), so $u \in P$ and $g \subseteq u$ for all $g \in C$, hence u is an upper bound of C , in fact, the least upper bound.

Thus, Zorn's lemma applies and gives a maximal $\tilde{f} \in P$. Then $\text{dom}(\tilde{f})$ must be all of X since otherwise, taking $x \in X \setminus \text{dom}(\tilde{f})$, we can extend \tilde{f} further to $h: \text{dom}(\tilde{f}) + \mathbb{R}x \rightarrow \mathbb{R}$ satisfying $h \in P$, as demonstrated above, contradicting the maximality of \tilde{f} . QED

Complex Hahn-Banach. Let X be a complex vector space and p be a semi-norm on X . Let $Y \subseteq X$ be a subspace and f a linear functional on Y satisfying $|f(y)| \leq p(y)$ for all $y \in Y$. Then f admits an extension to a linear functional $\tilde{f}: X \rightarrow \mathbb{C}$ satisfying $|\tilde{f}| \leq p$.

Proof. Let $u := \operatorname{Re} f$, so u is a real linear functional on Y satisfying $|u(y)| \leq |f(y)| \leq p(y)$ for all $y \in Y$, hence $u(y) \leq p(y)$ $\forall y \in Y$. By real Hahn-Banach, there is an extension $\tilde{u}: X \rightarrow \mathbb{R}$ of u satisfying $\tilde{u} \leq p$. As in the remark above, $\tilde{u}(-x) \leq p(-x) = p(x)$ and $\tilde{u}(x) \leq p(x)$ implies $|\tilde{u}(x)| \leq p(x)$, so $|\tilde{u}| \leq p$. Take $\tilde{f}(x) := \tilde{u}(x) - i\tilde{u}(ix)$ for all $x \in X$. This is linear, by an earlier lemma, and $\|\tilde{f}\|_p = \|\tilde{u}\|_p$; more precisely, for each $x \in X$, take $d := \overline{\operatorname{sgn} \tilde{f}(x)}$, so $|\tilde{f}(x)| = d \cdot \tilde{f}(x) = \tilde{f}(dx) = \tilde{u}(dx) \leq p(dx) = |d| \cdot p(x) = p(x)$. QED

Main Hahn-Banach corollaries. Let X be a (complex) normed vector space.

(a) For each closed subspace $Y \subseteq X$ and $x \in X \setminus Y$, $\exists f \in X^*$ with $f|_Y = 0$, $f(x) \neq 0$.
 In fact, we can ensure $\|f\| = 1$ and $f(x) = \delta := \operatorname{dist}(x, Y) := \inf_{y \in Y} \|x-y\|$.

(b) If $0 \neq x \in X$ then $\exists f \in X^*$ s.t. $\|f\| = 1$ and $f(x) = \|x\|$.

(c) Bounded linear functionals separate points of X , i.e. for $x \neq y$ in X ,
 there is $f \in X^*$ with $f(x) \neq f(y)$.

(d) For each $x \in X$, define $\hat{x}: X^* \rightarrow \mathbb{C}$ by $\hat{x}(f) := f(x)$. Then $\|\hat{x}\| = \|x\|$, so the map $x \mapsto \hat{x}: X \rightarrow X^{**}$ is an isometry. We identify X with its image in X^{**} and write $X \subseteq X^{**}$.

Proof. (a) Define $f: Y + \mathbb{C}x \rightarrow \mathbb{C}$ by $f(y + \lambda x) = \lambda \cdot \delta$. This is a bold linear functional with $\|f\| = 1$ because $|f(y + \lambda x)| = |\lambda| \cdot \delta \leq |\lambda| \|y + \lambda x\| = \|y + \lambda x\|$ and $\forall \varepsilon > 0$ we can choose $y \in Y$ so that $\|y + x\| \leq \frac{\delta}{1-\varepsilon}$ (†) hence $z := \frac{1}{\|y+x\|} (y+x)$ has norm 1 and

$$|f(z)| = \frac{1}{\|y+x\|} f(y+x) = \frac{\delta}{\|y+x\|} \stackrel{\text{†}}{\geq} \frac{\delta(1-\varepsilon)}{\delta} = 1-\varepsilon.$$

a